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Plan of the lectures:

Preamble: Singular cardinals, compactness
Singular compactness theorem
Constructions of non-compact objects
Consistency results
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Compactness (and reflection)

It is well known that problems about infinite cardinals tend to
have a different flavour at singular cardinals and their
successors. For example:

The value of the continuum function at a singular strong
limit cardinal κ is closely tied to its values below, but for κ
regular we can use the Cohen poset Add(κ, λ) to show this
is not the case.
Reflection/compactness phenomena such as stationary
reflection behave differently: for example if κ is regular
then κ+ has a non-reflecting stationary subset, but this is
false in general for singular κ.
Consistency and independence results involving singular
cardinals and their successors tend to be harder and
involve larger cardinals than parallel results for other
cardinals.
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Why are singular cardinals different?

Many proofs work by “stepping up” from a cardinal κ to
the successor κ+, so singular cardinals present an obstacle.
In the absence of large cardinals, there are inner models of
V called “core models” which have L-like combinatorics
(square, diamond, GCH) and which compute the
successors of V-singulars correctly.
On a more positive note, the fact that a singular cardinal κ
is the union of fewer than κ sets of size less than κ powers
types of combinatorial argument that are not available at
regular cardinals. PCF theory is a salient example.
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Compactness is a generic term for common phenomenon: if
many small substructures of some structure enjoy a certain
property, then the whole structure enjoys the property.

The
dual notion of Reflection concerns the phenomenon in which if a
structure has a certain property, then many of its small
substructures have the same property. For example:

(Logic) The Compactness Theorem for first order logic
asserts that if every finite subset of a first order theory T is
consistent, then T is consistent.
(Combinatorial set theory) A stationary subset S of a
regular uncountable cardinal κ reflects if and only if there is
α < κ such that cf(α) > ω and S ∩ α is stationary in α.
(Cardinal arithmetic) Silver’s theorem asserts that if GCH
fails at a singular strong limit cardinal κ of uncountable
cofinality, then it fails for almost every µ < κ.
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Large cardinals tend to imply compactness/reflection:

κmeasurable, N is a structure with |N| = κ. Let j : V →M with
crit(j) = κ and κM ⊆M.Then j[N] is a substructure of j(N),
j[N] ∈M, M |= |j[N]| = κ < j(κ). So for many properties P, if N
of size κ has P then a substructure of size less than κ has P.

κ λ-supercompact, N is a structure with |N| = λ. Let j : V →M
with crit(j) = κ, λ < j(κ) and λM ⊆M.Then j[N] is a
substructure of j(N), j[N] ∈M, M |= |j[N]| = λ < j(κ). So for
many properties P, if N of size λ has P then a substructure of
size less than κ has P.
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Shelah’s singular compactness theorem is a general compactness
result about abstract notions of freeness. Here are some striking
special cases. Let λ be a singular cardinal:

If G is an abelian group, |G| = λ and every subgroup H 6 G
with |H| < λ is free, then G is free.
If X is a family of countable sets, |X| = λ and every
subfamily Y ⊆ X with |Y| < λ has a transversal, then X has
a transversal.

These are both true for λmeasurable, both false for (eg)
λ = ℵ1.
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A quick review:

If (G,+) is an abelian group, then we can view it as a
Z-module (a module is like a VS, only scalars are an
arbitrary ring) in the obvious way. G is free if it has a basis,
that is to say a linearly independent generating set.
A transversal for a family of non-empty sets is a 1-1 choice
function.
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The setting for the Singular Compactness theorem is axiomatic.
I’ll be a bit informal in the discussion. You can deduce the
minimal axioms that make everything work from the proofs.

We have a structure M and a reasonable notion of substructure
(in my examples substructures would be respectively
subgroups of an abelian group, or subsets of a family of
non-empty countable sets). We’ll work inside a “universe”
consisting of substructures of M.

There’s a substructure 0 which is minimal under inclusion.
For any two substructures A, B there is a unique minimal
substructure A + B which contains A ∪ B.
The union of a continuous chain of substructures is a
substructure.
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We also have a notion of freeness for structures (in my
examples the free structures are respectively free abelian
groups, and families of sets which have a transversal). Notice
that in each case freeness has a witness (respectively a basis and
a a transversal).

The crucial idea is to relativise the notion of freeness, that is to
introduce a notion “B is free over A” where A is a substructure
of B. The intention is that the free structures should be the ones
which are free over 0. Typically the definition of B’s being free
over A will imply that any witness for A extends to a witness
for B.
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In our examples:

When A is a subgroup of B, then B is free over A iff the
quotient group is a free abelian group.
When A, B are non-empty families of countable sets and
A ⊆ B, then B is free over A iff B \ A has a transversal (say
g) which takes values outside

⋃
A.
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To prove the Singular Compactness theorem, we need some
properties of the relation “B is free over A”. For brevity, we
follow Shelah and write “B/A is free” for this relation.

A/A is free. If B/A is free and C/B is free then C/A is free.
If λ is a limit ordinal and (Ai)i<λ is an increasing and
continuous chain such that Ai+1/Ai is free, then

⋃
i<λ /A0 is

free.

Note: It’s often true (and is true in our two running examples)
that if C/A is free, then B/A for all B intermediate between A
and C. But we don’t need this.
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Outline of proof of Singular Compactness. Assume M is a
structure of singular cardinality λ such that all (or just many)
substructures are free.

Assuming that good player wins certain games, show that
M is free.
Show that good player wins the games. This will involve
adding some assumptions on the relation “B/A is free”.
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Recall that we fixed a structure M. I decribe two games where
the moves are substructures of M.

G1(κ):

Let κ be an infinite cardinal with κ < |M|.

I A0 A1
. . .

II B0 B1

The rules are that B0 = 0, Ai and (for i > 0) Bi have size κ,
B0 ⊆ A0 ⊆ B1 ⊆ and Bn+1/Bn is free for all n. The first player to
violate the rules loses, if the rules are followed forever then II
wins.
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G2(κ,µ, B, B ′):
Let κ < µ < |M| and let B, B ′ be structures where B ′ has size µ
and B ′/B is free.

I C0 C1
. . .

II D0

The rules are that Ci, Di are structures of size κ and that
C0 ⊆ D0 ⊆ C1 . . .. The first player to violate these rules loses,
and if the rules are never violated then II wins iff B ′ + Dω is
free over B + Dω, where Dω =

⋃
n<ωDn =

⋃
n<ω Cn.
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Now we can prove a version of the Singular Compactness
theorem. We assume that:

M is a structure of size λ, λ is singular with cf(λ) = µ < λ.
II wins G1(κ) played on substructures of M for all large
κ < λ.
II wins G2(κ,µ, B, B ′) for all large κ < µ < λ and all
relevant B, B ′.

We fix (λi)i<µ a sequence of cardinals which is increasing,
continuous and cofinal in λwith µ < λ0.
We also fix σi which is winning for II in G1(λi) when i < µ is not
a limit ordinal, and τi(B, B ′) which is winning in
G2(λi, λi+1, B, B ′) for all i < µ and all relevant B, B ′.
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Construction: we will build a matrix of substructures withω
rows and µ columns:

...
...

... . . .

A0
1 A1

1 A2
1 . . .

B0
1 B1

1 B2
1 . . .

A0
0 A1

0 A2
0 . . .

B0
0 = 0 B1

0 = 0 B2
0 = 0 . . .

where:

|Ai
n| = |Bi

n+1| = λi for all i < µ, n < ω.
⋃

i<µAi
0 = M.

Column i is increasing for all i < µ. As a consequence,⋃
n<ωAi

n =
⋃

n<ω Bi
n. We will denote this structure by Bi

ω.
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The “nth A-row” (Ai
n)i<µ is increasing and continuous for

all n < ω. As a consequence, the sequence (Bi
ω)i<n is

increasing and continuous with union M.

For non-limit i, column i is a run of the game G1(λi) where
player II is playing the structures Bi

n according to the
winning strategy σi. As a consequence, Bi

n+1/Bi
n is free for

all n < ω.
For every i < µ and every pair Bi+1

n , Bi+1
n+1 in column i + 1,

there is a run of the game G2(λi, λi+1, Bi+1
n , Bi+1

n+1)

I Bi
n+1 Bi

n+2
. . .

II Di,n
0 Di,n

1
where II is playing according to the winning strategy
τi(Bi+1

n , Bi+1
n+1). As a consequence, (Bi+1

n+1 + Bi
ω)/(Bi+1

n + Bi
ω)

is free.

18 / 43
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Why is this enough? I’ll describe a continuous increasing chain
of lengthω · µ, whose union is M and which has its first entry
free over 0 and each successor entry free over the previous one.

We define Dω·i+n = Bi+1
n + Bi

ω. The key points are that:

D0 = B0
ω is free over zero.

By construction, Dω·i+n+1 is free over Dω·i+n.
For each i < µ,⋃

n<ωDω·i+n = Bi+1
ω +Bi

ω = Bi+1
ω = Bi+1

ω +Bi+2
0 = Dω·(i+1).

For each limit j < µ,
⋃

i<j,n<ωDω·i+n = Bj
ω = Dω·j.

19 / 43
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How do we do it? The main issue is that we need the A-rows to
be continuously increasing, and we need every column
(including limit columns) to be constructed according to
strategies for the game G2. It is here that λ being singular (in
particular µ < λ0) will be crucial.

We will build the matrix of sets row by row.

The first two rows are easy: Bi
0 = 0 for all i, and (Ai

0)i<µ is
any increasing and continuous chain of substructures with
|Ai

0| = λi and
⋃

i<µAi
0 = M.

The “B-rows” with positive subscripts are also easy: for
non-limit i we compute Bi

n+1 from Ai
0, . . . Ai

n and the
strategy σi, for limit i let Bi

n+1 = Ai
n.

20 / 43
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The first two rows are easy: Bi
0 = 0 for all i, and (Ai

0)i<µ is
any increasing and continuous chain of substructures with
|Ai

0| = λi and
⋃

i<µAi
0 = M.

The “B-rows” with positive subscripts are also easy: for
non-limit i we compute Bi

n+1 from Ai
0, . . . Ai

n and the
strategy σi, for limit i let Bi

n+1 = Ai
n.
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To construct the “A-rows” with positive subscripts:
Assume we constructed Ai

m for m 6 n and Bi
m for

m 6 n + 1.

Fix i. For each successive pair Bi+1
m , Bi+1

m+1 of
entries in column i + 1 with m 6 n, consider the partial run
I Bi

m+1 . . . Bi
n+1

. . .
II Di,m

0 . . . Di,m
n−m

of the game G2(λi, λi+1, Bi+1
m , Bi+1

m+1), where player II is
playing according to the winning strategy τi(Bi+1

m , Bi+1
m+1).

Define an auxiliary set Ci
n+1 such that Bi

n+1 ⊆ Ci
n+1,

|Ci
n+1| = λi, and Di,m

n−m ⊆ Ci
n+1 for all m 6 n.
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(Crucial point) For each i, enumerate Ci
n+1 in order type λi.

Define Ai
n+1 to be the least substructure such that

Cj
n+1 ⊆ Ai

n+1 for all j 6 i, and the first λi many points in the

enumeration of Cj
n+1 are in Ai

n+1 for i < j < µ.

Since µ < λ0 6 λi, we see that |Ai
n+1| = λi. The other key

points are that Bi
n+1 ⊆ Ci

n+1 ⊆ Ai
n+1, and that (Ai

n+1)i<µ is
continuous and increasing with i.

This concludes the proof. As we see shortly, we will need λ to
be a limit cardinal to see that we can win G1(κ) for κ < λ. We
needed λ singular to do the “looking ahead to all subsequent
columns” in the main construction.
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How to win the relevant games? To win game one, add an
assumption about the “free over” relation:

If (Ai)i<κ+ is an increasing and continuous chain of
structures of size κ such that

⋃
i<κ+ /A0 is free, then there is

a club set C ⊆ κ+ such that 0 ∈ C and Aj/Ai is free for
i, j ∈ C with i < j.

Key idea for the first game: If all (many) substructures of size
κ+ are free (that is free over 0) then II has a winning strategy for
G1(κ). It’s important that λ is a limit cardinal, since we want to
win for unboundedly many κ < λ.
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We appeal to the well-known Gale-Stewart theorem on the
determinacy of open games. The game is closed for player II, so
if II does not win then I wins with some strategy σ.
We fix some large regular θ and build a continuous increasing
chain (Mi)i<κ+ of elementary substructures of Hθ such that:

M,σ ∈M0.
κ+ 1 ⊆Mi, |Mi| = κ for all i < κ+.
〈Mi : i 6 j〉 ∈Mj+1 for all j < κ.
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Let M∞ =
⋃

i<κ+ Mi, so that by hypothesis M∞ ∩M is free. By
our added assumption about “free over”, we can find (taking
the firstω points of an appropriate club) a strictly increasing
ω-sequence (Bn) of structures of size κ such that B0 = 0,
Bn = Mαn ∩M for increasing αn < κ

+, and Bn+1/Bn is free for
all n.

Now we build a run of the game where player II plays the Bn’s
and player I responds using σ.

I σ(B0) σ(B0, B1)
. . .

II B0 B1
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This is a legitimate run of the game because σ, M and the
models Mαi for 0 < i 6 n are all elements of Mαn+1 . So
σ(B0, . . . Bn) ∈Mαn+1 , and hence easily σ(B0, . . . Bn) ⊆ Bn+1.

We generated a run of the game where the wrong player wins,
so player II must win the game.

Remark: It was an overkill to assume that all substructures of
M with size κ+ are free.
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Adding more axioms about freeness, Shelah proved a result
about G2 parallel to the one I proved for G1. But it turns out
that in many cases (including my two running examples) we
don’t need any assumption about the ambient structure M to
prove that player II wins G2.

Abelian groups: Let X be a set of coset representatives for a
basis of B ′/B. After I plays Cn, II finds Xn ⊆ X of size κ such
that every element of Cn ∩ B ′ is congruent mod B to something
in span(Xn), and then lets Dn = Cn + span(Xn). Now check
X \

⋃
n Xn gives coset representatives for a basis of

(B ′ + Dω)/(B + Dω).
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Transversals: Let g be a transversal of B ′ \ B which does not
take any value in

⋃
B. After I plays Cn, II finds Dn ⊇ Cn such

that |Dn| = κ and g(x) ∈
⋃

Cn =⇒ x ∈ Dn, this is possible
because g is 1-1. Now check that g � B ′ \ (B∪Dω) does not take
any value in

⋃
Dω.
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In this part we describe some techniques for constructing
“non-compact” objects, that is objects whose properties are
different from those of its small substructures.

Focus on existence of transversals for families of sets.

Notation:

PT(λ, κ): For every family of size λ consisting of sets of size less
than κ, if very subfamily of size less than λ has a transversal
then the whole family has a transversal.
NPT(λ, κ): Not PT(λ, κ).

By the compactness theorem for first order logic, PT(λ,ω)
holds for all λ.
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Let µ and τ be regular cardinals with µ < τ, and let
S ⊆ τ ∩ cof(µ). A ladder system on S is a sequence (xδ)δ∈S such
that xδ is cofinal in δwith order type µ.

If γ, δ ∈ S with γ < δ, xγ ∩ xδ is bounded in γ.

If S is a stationary subset ofω1, then a ladder system on S will
be a witness to NPT(ω1,ω1).

By Fodor, there is no transversal. An easy diagonalisation
shows that every countable subset has a transversal.
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For τ regular and uncountable, a non-reflecting stationary subset
(NRSS) of τ is S ⊆ τ such that S is stationary, and S ∩ γ is
non-stationary for all γ ∈ τ ∩ cof(> ω).

Key fact: If S is a NRSS of τ, and (xδ)δ∈S is a ladder system then
for all γ < τwe can choose disjoint tails of xδ for δ ∈ S ∩ γ.

Proof by induction on γ. If γ = γ0 + 1 then nothing to do unless
γ0 ∈ S, in which case apply IH for δ < γ0 and then use
sup(xδ ∩ xγ0) < δ to ensure disjointness from xγ0 . If γ limit then
choose a cofinal continuous sequence (γi) with γi < S, apply IH
to each block S ∩ [γi,γi+1) making sure that tails start above γi.

Remark: By same argument, if S ⊆ ω1 is non-stationary then a
ladder system on S has disjoint tails, in particular it has a
transversal.
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transversal.
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For τ regular and uncountable, a non-reflecting stationary subset
(NRSS) of τ is S ⊆ τ such that S is stationary, and S ∩ γ is
non-stationary for all γ ∈ τ ∩ cof(> ω).
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for all γ < τwe can choose disjoint tails of xδ for δ ∈ S ∩ γ.

Proof by induction on γ. If γ = γ0 + 1 then nothing to do unless
γ0 ∈ S, in which case apply IH for δ < γ0 and then use
sup(xδ ∩ xγ0) < δ to ensure disjointness from xγ0 . If γ limit then
choose a cofinal continuous sequence (γi) with γi < S, apply IH
to each block S ∩ [γi,γi+1) making sure that tails start above γi.

Remark: By same argument, if S ⊆ ω1 is non-stationary then a
ladder system on S has disjoint tails, in particular it has a
transversal.

31 / 43



Preamble
Singular compactness

Constructing non-compact objects

Non-reflecting stationary sets
PCF

(Milner-Shelah) If κ < λ regular and there is S ⊆ λ ∩ cof(κ) a
NRSS of λ, then NPT(κ,ω1) implies NPT(λ,ω1).

Proof: Let (Ai)i<κ be countable sets witnessing NPT(κ,ℵ1). Let
(xδ)δ∈S be a ladder system on S, enumerate xδ as xδ(i) for i < κ.
Define Bδ,i = ({δ}× Ai) ∪ {xδ(i)}, and claim that (Bδ,i)δ∈S,i<κ
exemplify NPT(λ,ℵ1).

If f transversal, for each δ there is i such that f (Bδ,i) = xδ,i < δ,
impossible by Fodor. Fix γ < λ, choose (jδ)δ∈S∩γ such that if
yδ = {xδ(i) : jδ 6 i < κ} then (yδ)δ∈S∩γ are disjoint. Take
transversal hδ of (Ai)i<jδ . Now map Bδ,i to (δ, hδ(Ai)) for i < jδ
and xδ(i) for jδ 6 i < κ, get transversal of (Bδ,i)δ∈S∩γ,i<κ.
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For any regular κ, κ+ ∩ cof(κ) is NRSS of κ+. Since we know
NPT(ℵ1,ℵ1), deduce NPT(ℵn,ℵ1) for 1 6 n < ω.

But Magidor showed that modulo large cardinals (ω
supercompact cardinals) that consistently every stationary
subset of ℵω+1 reflects.
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Magidor and Shelah used PCF to show that NPT(ℵω+1,ℵ1).

Quick review of PCF for ℵω. Let <∗ denote eventual
domination:

There exist unbounded A ⊆ ω, and a sequence (fα)α<ℵω+1

which is increasing and cofinal in (
∏

n∈A ℵn,<∗).
Adjusting A and f ’s we may assume that 0 < A and
fα(n) ∈ [ℵn,ℵn+1).
Let α < ℵω+1 be a limit ordinal. An exact upper bound for
(fβ)β<α is g ∈

∏
n∈A ℵn such that

{h ∈
∏

n∈A ℵn : h <∗ g} = {h ∈
∏

n∈A ℵn : ∃β < α h <∗ fβ}.
If an eub exists it is unique mod finite.
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If cf(α) > ω and α is a point where an eub g exists with
cf(g(n)) > ω for all n, then cf(g(n)) = cf(α) for all large n.
Such α are called good. α is good iff there are I ⊆ α
unbounded and m < ω such that (fβ(n))β∈I is strict
increasing for m 6 n < ω.

There are stationarily many good points in each
uncountable cofinality.
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Let T be the stationary set of good points of cofinality ℵ1. PCF
theory gives structural information about T ∩ γ for γ < ℵω+1
withω1 < cf(γ):

If γ is good, then almost all points in γ ∩ cof(ω1) are in T.
If γ is ungood, then almost all points in γ ∩ cof(ω1) are not
in T.

For the experts: If γ is good, fix I and n witnessing this: all α of
cofinalityω1 such that I is unbounded in α are good. If γ is
ungood, it is in the Bad or Ugly cases of Shelah’s trichotomy: in
either case the witnessing objects witness ungoodness almost
everywhere below.
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Viewed as sets of ordered pairs, the fα’s form an almost disjoint
family of countable subsets of A×ℵω. To emphasise that we
are think of them as sets, we write Aα = {(m, fα(m)) : α ∈ A}.
Ordering Aα by first entries, we have a notion of “tail of Aα”.

Trivial remark: X × Y is disjoint from Z×W iff X is disjoint
from Z or Y is disjoint from W.

Idea of proof: Construct a witness to NPT(ℵω+1,ℵ2) and then
“step down” to get a witness to NPT(ℵω+1,ℵ1).
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Key claim: for all γ < ℵω+1 there exist (Bα, Dα) for α ∈ T ∩ γ
such that:

Bα is a tail of Aα.
Dα is club in αwith ot(Dα) = ω1.
The sets Bα ×Dα are pairwise disjoint.

Assuming key claim, we fix Eα club in α for each α ∈ T and
claim that {Aα × Eα : α ∈ T} exemplify NPT(κ+,ℵ2). There is
no transversal of the whole system (freeze 1st coordinate on a
stationary set, then apply Fodor on 2nd coordinate). For
γ < ℵω+1 apply the key claim and see that
Bα × (Dα ∩ Eα) ⊆ Aα × Eα, these subsets are nonempty and
pairwise disjoint.
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(Sketchy) Proof of key claim:
Show it by induction on γ, similar to disjointifying tails of a
ladder system on a NRSS.

Easy case 1: γ = γ0 + 1. Apply IH to γ0, and then if γ0 ∈ S
choose Dγ0 and replace Dα’s below by tails disjoint from Dγ0 .

Easy case 2: There exist γi < T increasing continuous and
cofinal in γ. Use γi’s to cut γ into blocks, apply IH in each
block, then replace Dα for α ∈ [γi,γi+1) by tail above γi.
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Hard case: None of the above. By assumption γ is good and
cf(γ) > ω1. Fix I ⊆ γ cofinal and m such that (fα(n))α∈I is
increasing for n > m.

C is the club of α < γ such that I is unbounded in α:
decompose γ into lim(C) and points which live in an interval
(δ,η] where δ,η are successive points of C.

By IH choose (Bα, Dα) for α in each such interval, making sure
that Dα’s are above δ.

For α ∈ S ∩ lim(C) choose Dα = C ∩ α, so that Dα ∩Dβ = ∅ for
β < α unless also β ∈ S ∩ lim(C).
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Key point: Fix α ∈ S ∩ lim(C). For every β ∈ I ∩ α, there is
n(β) > m such that fβ(n) < fα(n) for n > n(β). As cf(α) = ω1,
there is J ⊆ I ∩ α unbounded and n∗ such that n(β) = n∗ for
β ∈ J. But then (by choice of I and m) fβ(n) < fα(n) for all
β ∈ I ∩ α and n > n∗.

Let η(α) be the least point of I above α. Then we can choose
m(α) > m such that for n > m(α):

fβ(n) < fα(n) for all β ∈ I ∩ α.
fα(n) < fη(α)(n).

Let Bα = {(m, fα(m)) : m > m(α)}.
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Now let α,α ′ ∈ S ∩ lim(C) with α < α ′, and note that
α < η(α) ∈ I < α ′.

For n > m(α), m(α ′),

fα(n) < fα(η)(n) < f ′α(n)

It follows that Bα ∩ Bβ = ∅.
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